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LETTER TO THE EDITOR 

Adsorption of branched polymers at surfaces: scaling and 
Monte Carlo analysis 

P M LamtS and K Binder§ 
t Institut fur Theoretische Physik, Universitat zu Koln, SO00 Koln 41, Federal Republic 
of Germany 
5 Institut fur  Physik, Johannes Gutenberg Universitat Mainz, 6500 Mainz 1, Federal 
Republic of Germany 

Received 15 February 1988 

Abstract. Using Monte Carlo methods we calculate the specific heat of branched polymers 
near a hard wall in the presence of a short-range attractive force between monomers and 
the wall. The specific heat exhibits a peak at a temperature T,( N )  depending on the size 
of the polymer N .  Both T,( N )  and the height of the peak increase monotonically with 
N. The result agrees very well with a scaling function for the specific heat derived from 
a scaling analysis in analogy with linear polymers. In addition, the scaling analysis yields 
the adsorption temperature Tat. 0.583 and the crossover exponent 4 = 0.714. 

The statistical mechanics of surface critical phenomena has been of interest for a long 
time. (For a detailed review see [ I ,  21.) In particular, the problem of adsorption of 
linear polymers at a wall had been analysed by Eisenriegler et al [3] using scaling 
arguments and Monte Carlo simulations. There, new critical exponents y1  and yI1 at 
the ‘ordinary’ transition as well as at the adsorption multicritical point (‘special 
transition’) were estimated, as well as the so-called crossover exponent 4. A similar 
problem in the case of branched polymers has not yet been studied at all, though it 
may have important and interesting physical applications. It possibly allows us to 
understand surface properties of such diverse materials as rubbers, solutions containing 
branched polymers, surface effects at the sol-gel transition, etc. Also introducing an 
attractive interaction between the surface and the branched polymers will allow us to 
address the problem of adsorption of branched polymers from the solution to the wall. 
In addition, a phase transition is expected (which has the properties of a multicritical 
point) where the polymer configuration changes from three dimensional to quasi-two 
dimensional. 

We model branched polymers as site lattice animals on the simple cubic lattice. 
Between any two occupied sites of the animal a bond is assigned and if both these 
sites happen to be on the surface, this bond is assigned a negative interaction energy 
--E. If we chooose units such that &/kB = 1, where kB is the Boltzmann constant, then 
the partition function for animals of size N is 

M ( N )  
ZN= AN(n)e””  

n = l  

$ On leave from Institute of Theoretical Physics, Chinese Academy of Science, Beijing, China. 

0305-4470/88/070405 + 05$02.50 @ 1988 IOP Publishing Ltd L405 



L406 Letter to the Editor 

where A,(n) is the number of N-site animals with n bonds on the surface and T is 
the absolute temperature. M (  N )  is the maximum possible number of surface bonds 
for animals of size N and for the simple cubic lattice, M (  N )  = [ 2 (  N - N”>)], where 
the square brackets denote the largest integer value of the argument. The lower limit 
in the summation is 1 since we require that there is at least one particle attached to 
the wall. A physical quantity easily derived from the partition function is the specific 
heat C(  N): 

c = ( ( n ’ ) - ( n ) ’ ) / ( ~ ~ * ) -  ( T -  T ~ ) - =  ( 2 )  

(n”= ZN-’ c nPAN(n) e””. (3) 

where 
M ( N )  

n = l  

A convenient way to calculate C is to calculate the ratios 

rN( T I )  E AN( n)/AN( n - 1). (4) 
Then ( n p )  is given by 

and 

The Monte Carlo method we use to estimate the ratios rN ( n )  is a straightforward 
modification of that due to Dickman and Schieve [4]. One starts with an animal in 
configuration r n  and numbers the occupied sites with the set { 1,2 ,  . . . , N }  with particle 
1 at the origin which is always attached to the wall throughout the whole simulation. 
A trial configuration r’ is generated in the following way. First, choose randomly a 
particle i from the set {2 ,3 , .  . . , N }  and denote its position by x,. Now choose randomly 
a particle j from the set { 1 ,2 , .  . . , N } .  The position x* is a randomly chosen nearest 
neighbour of j .  The trial configuration r’ is the configuration in which particle i at 
position x, is moved to position x*. If x* is occupied, if x* = x,, or if r‘’ is disconnected, 
then the new animal configuration is rn+l  = r,. Otherwise the new animal configuration 
T n + ,  is taken as 

r’ with probability w = min[u(x, ; r ’ ) / u ( x * ;  r,), l]min[exp(AB,/ T ) ,  13 
(7) r n + 1 =  

Here u ( y ;  r) is the number of occupied nearest neighbours of y in the configuration 
r and AB, is the change in the number of surface bonds in going from r, to r’. A 
convenient method for checking the connectivity of the cluster is the method of ‘burning’ 
[ 5 ] .  Since the probability for choosing x, is l / (N-  1) and that for choosing x* is 
u(x*; r , ) /qN ,  where q is the coordination number of the lattice, the transition proba- 
bility 

p(r, ,+r’) = [ u ( x * ;  T , ) / q N ( N +  l ) ]  min(u(x,; T’)/v(x*; r n ) ,  l]min[exp(AB,/T), 11 

satisfies detailed balance. Therefore the ratio r N ( n )  defined in (4) is given by 

r n  with probability (1 - w ) .  { 

(8) 

(9) rN ( n )  AN (n)/ AN ( n  - 1) = e-’’’ NnINn-1 
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where N,, is the number of realisations of animals with exactly n surface bonds at 
temperature T. Our method generates full lattice animals. For a method that generates 
loopless animals or lattice trees see [ 6 ] .  

Using the above Monte Carlo method we have calculated animal configurations 
with the number of surface bonds n ranging from n = 1 to n = M (  N ) .  Since at high 
temperatures most of the animals generated have very few surface bonds and at low 
temperatures only animals with very many surface bonds are generated, we have to 
use several (4-8) different temperatures for animals of large size N .  For each tem- 
perature, 10-25 million trial configurations r' were generated. A successful trial is 
called an event. At high temperatures, up to 25% of the trials are successful, but at 
the lowest temperatures that we have used, only 2% of the trials are successful. The 
data for r N ( n )  have statistical error of about 1%. The result for the specific heat C 
is shown in figure 1 for N = 30,40,50,80 and 100. We see that the specific heat exhibits 
a peak at a temperature T,( N )  which increases monotonically with N. As N increases, 
the peak gets sharper and its height also increases. In table 1 we show the position 
of the peak T,,,(N) and its height C,(N) as a function of N. 

1.: 

c 
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T 

Figure 1. Specific heat C plotted against temperature T for various animal sizes N. 

For linear polymers, it is known that the partition function has the scaling form 
[3], for N + 00 and t E ( T  - T J /  T, +O, 

z, = Ivy-'$( ") (10) 

(the y exponent here is actually ysB1 in the notation of [3] because it is required that 
at least one end of the polymer touches the surface, and we consider the vicinity of 
the surface-bulk multicritical point), where T is the adsorption temperature, 4 is a 
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Table 1.  Position Tm( N )  and height C,( N )  of the specific heat peak as a function of the 
animal size N.  

30 0.4940 0.9898 
40 0.5055 1.1205 
50 0.5215 1.2302 
80 0.5390 1.5074 

100 0.5440 1.6555 

crossover exponent and II, is a universal scaling function. From (10) and the relation 
a = 2 - 1/ 4 one obtains the scaling form for the specific heat, for N + 00 and t + 0, 

g (  t N 4  ). (11) C - N24-'  

Although the scaling form (1 1) was derived only for linear polymers, we feel that the 
scaling structure carries over straightforwardly into the case of branched polymers. 
Only the critical exponents, upper critical dimension, scaling functions such as II, and 
g change. 

The crossover exponent 4 is obtained by fitting the values C,( N )  in table 1 to the. 
form C,( N ) - N Z d - ' .  This procedure relies on the tentative assumption that the data 
in figure 1 are already close enough to the asymptotic region where (1 1) holds. We 
obtain 4 ~ 0 . 7 1 4 .  Using this value of 4 in the finite-size scaling relation 

(12) 

and fitting the value of T,( N )  in table 1 we find T, = 0.583. In figure 2 we plot T,( N )  
against N-' with 4 = 0.714. The points lie more or less on a straight line with intercept 
at T, and thus are consistent with finite-size scaling. 

T,( N )  = T, - UN-@' 

N - +  
Figure 2. Positions of  the specific heat peaks T m ( N )  plotted against N-', with 4 = 0.714. 
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Figure 3. Scaled specific heat C /  N*"-' plotted against scaling variable iNm, with r =  
( T - T , ( N ) ) / T , ( N )  and +=0.714,forvarious N :  0, N = 5 0 ;  x ,  N = 8 0 ;  +, N = 1 0 0 .  

To test the scaling form ( l l ) ,  we plot in figure 3 the quantity C/ N2'-' against the 
scaling variable TN', where here we have taken f =  ( T - T,( N ) ) /  T,( N ) .  Since T,( N )  
approach T, for large N, f and t are equivalent for large N. From figure 3 we see that 
all the data for various N fall more or less on the same curve, which is the scaling 
function g. This confirms the scaling form ( 1  1 ) .  The increasing deviations in the wings 
of the scaling function are interpreted as corrections to scaling. Our data do not cover 
a wide enough range of N to allow a systematic analysis of these corrections, however. 

We have calculated the specific heat of branched polymers interacting with a hard 
wall. In the vincity of the adsorption multicritical point, the data confirm rather well 
a scaling form derived for the specific heat of linear polymers, yielding the tentative 
estimates T, = 0.583 and C#I = 0.714 for the adsorption temperature and the crossover 
exponent. This yields a specific heat exponent a = 2 - l / +  = 0.6. We plan to extend 
this investigation to other quantities, e.g. the squared gyration radii as considered in 
[3], in later work. 

PML thanks Professor Zittartz, Dr K Kremer and Dietrich Stauffer for discussions 
and the Sonderforschungs Bereich 125 for financial support. 
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